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A new computer simulation method for axisymmetric toroidal plasmas is developed. 
The method comprises two separate physical models representing different components of an 
experimental plasma. The first model is an MJ3D fluid equilibrium representation; the 
technique devised for the solution of this equilibrium is faster than any currently in common 
use. The second model is a macroparticle representation which uses guiding-center for- 
malism for the particles’ velocities and positions; consequently, the timestep used by this 
model may be many times Ionger than those possible for conventional macroparticle 
simulations. A new computer code, GUIDON, which incorporates in these models a 
solution for self-consistent magnetic fields, is presented. Special features of the guiding- 
center model are discussed in detail. Results of simulations using GUIDON are also 
presented. 

INTRODUCTION 

Most numerical models used in the study of high-temperature plasmas have 
heretofore fallen into two distinct classes: fluid and particle simulation models. 
Fluid models deal with sets of equations, such as the magnetohydrodynamic (MHD) 
equations, defining the macroscopic properties of the plasma-pressure, temperature, 
and density-as functions of time and space, including external forces and the 
evolution of magnetic fields affected by the plasma motion. Particle simulation models 
attempt to represent the microscopic processes of the plasma more accurately, by 
assigning a representative charge and mass to each of a large number of macroparticles, 
then allowing each to evolve in time and space according to proper (Newtonian or 
relativistic) equations of motion. Usually some components of electromagnetic fields 
are computed self-consistently for this motion. 

* Work performed under the auspices of the U.S. Energy Research and Development Ad- 
ministration. 
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Fluid models have the advantages of considering problems involving large and 
complex geometries, of producing results which may easily be correlated with 
experimental data, and of ,simulating phenomena which occur over relatively large 
time and length scales. Particle simulation permits the study of extremely fast processes 
and the investigation of complex interactive processes on very short length scales. 

Unfortunately, these advantages are to a large extent mutually exclusive, and an 
advantage in one method appears as a lack, and ,hence a disadvantage, in the other. 
In the work to be described here, an attempt has been made to create a model which 
combines certain of the advantages of both existing classes. Specifically, the method 
sought would be able to deal with problems both large and complex in configuration 
space and occupying times at least in the intermediate range (many hundreds of 
gyroperiods, if not many milliseconds) while at the same time permitting some 
detailed study of microscopic motions of the plasma and local development of its 
dominant self-consistent fields. 

Particle simulation methods in common use operate under severe restrictions on 
timestep, problem size, and number of particles. Typically, the physical dimensions 
of the plasma to be simulated must be quite small (usually considered part of an 
infinite plasma), and the total physical time simulated quite short; statistical require- 
ments on the calculation of fields dictate large numbers’ of particles. The technique 
presented in this paper aliows all three of the above restrictions to be relaxed. It is 
applicable to many experimental devices of current interest. 

The essence of this technique is the substitution of the guiding-center equations 
of motion for a more direct Newton-Lorentz force equation in advancing the 
velocities and positions of the particle in time. The guiding-center equations arise 
from the fact that, if certain conditions are met, fast gyromotion of charged particles 
around magnetic field lines can be averaged out, leaving just the motion parallel to 
the field lines and the slow drift motion in the perpendicular direction. The trajectories 
defined by the guiding-center equations are not those of the individual ions or 
electrons, but of the centers of their circular gyro-orbits. Thus these points (the 
guiding centers), and not the actual physical particles, are the simulation particles 
used in the model; the details of gyromotion are not followed. Where stability of 
integration might require a particle model to execute between 5 and 30 timesteps in 
traversing a single gyro-orbit-even though the orbit itself were of no particular 
significance-the guiding-center equations may take timesteps as long as several 
gyroperiods. 

The problem of computation of MHD equilibrium con&urations in toroidal 
geometries has received considerable attention [la]; the methods currently in use 
satisfy physical and computational criteria of convergence and accuracy. However, 
all these methods were designed to consider only the equilibrium solution itself. 
Because the computation required was not inherently long, it was not necessary to 
search for ways to achieve large savings in running time and e5ciency. But if one 
intends to use such an equilibrium calculation as part of a more general numerical 
algorithm, and particularly if it is to be repeated as one step of a cyclic process, 
existing methods may take too long to be practical. A self-consistent solution of the 
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magnetic .fields generated by ‘the macroparticles and by the fluid required a very rapid 
solution to Ampere’s law to alternate with cycles in which the macroparticles moved; 

Cylindrical coordinates are used in this solution, and axial symmetry is assumed 
so the calculational domain is (r, z), as .shown in Fig. 1. The parameters used to 
illustrate the method will be those of a Tokamak, though other appropriate devices 
would serve as well. 

, Boundary of computational mesh 

Boundary of plasma 

FIG. 1. Calculational domain for cylindrical coordinates. 

The computation of magnetic surfaces in the Two-Energy Component Toroidal 
Fusion Test Reactor (TFTR) is presented as an application of the GUIDON code. 

TORO~DAL MHD EQUILIBRIUM 

We consider hydromagnetic equilibria for a toroidal plasma with a scalar pressure. 
The basic equations are 

Vp = (l/c)j x B, (0 

V x B = (4n/c)j, (2) 

V-B=O. (3) 

We assume that the system is axially symmetric, and consider only the toroidal 
component, j, , of the current density. The poloidal flux function $(I-, z) is then given 
by 

(4) 

where 
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Grad [5] has given the form of the right-hand side of Eq. (4) for the scalar pressure 
case as 

(6) 

where p(#), the scalar pressure, and 

A#) = Wb2 (7) 

are given functions of +, and Bd is the toroidal component of the magnetic field. 
We shall set 

g’(lcI) = BS> f’(#)v 69 

where 

f(#) = & = W4~~9 (9) 

with 

41G) = 1 + bP(v9, (10) 

where k = I,/$ with I, in amperes, and b a given constant. (If b = 0, then the 
toroidal field reduces to the vacuum Bd = I&.) 

In general, we shall want to be able to consider devices which have a vacuum 
poloidal field in addition to the poloidal field caused by plasma currents. It is 
convenient when considering Eq. (4) to let 

* = *c + &I 9 (11) 

where 1,5~ is the poloidal flux function of the vacuum magnetic field and is a known 
solution to 

Combining Eqs. (4), (6), and (12), we obtain 

---rg(L+) a299 
a22 

= q [r2P’($)l + g’(lcI), (13) 

which is the equation for +, , which we solve numerically by the method described 
later in this paper. We note that the left-hand side of Eq. (13) is linear in z+%, , but the 
right-hand side depends nonlinearly, in general, on the total 4. The boundary 
conditions used in solving Eq. (13) are those appropriate to the plasma fields only. 
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The choice of the fun&anal dependence of p on # is arbitrary, but a choice which 
can be adjusted to fit many experimentally observed pressure profles’is 

PW = EC+ - bJm9 for # 2 A, 
= 0, elsewhere, 

where E and m are given constants and & is a reference flux surface defining the 
boundary of the plasma. 

GUIDING-CENTER PARTICLE MODEL 

Since simulation of high-energy electron currents is one of the proposed uses of 
this method, all particle equations of motion are relativistic. 

Application of the guiding-center equations assumes invariance of the magnetic 
moment, p, of the particles [6], 

P = y2movG21(2B), (14) 

where m, is the particle’s rest mass, B is the magnetic field, B = I B (, 
y = (1 - ?P/c2)-1/2, and uo is the gyrovelocity. The validity of this assumption 
requires that changes in B seen by the particle be very small during the course of a 
gyro-orbit. 

The geometry is two-dimensional, cylindrical, and axisymmetric, as illustrated in 
Fig. 1. 4 is the symmetry coordinate, and it is assumed that motion is identical in 
each I - z planar cross section of the torus. However, all three components of the 
magnetic field are calculated at each point in the 2-D computational domain, and all 
three components of both position and velocity are calculated for each particle. For 
this reason the code falls into a category known in the vernacular as “2+dimensional.” 
The particles are actually treated as rings of charge going around the torus, but their 
true three-dimensional location must be known to locate their turning points, as in 
trapped particle orbits. 

The model described in this paper neglects self-consistent electrostatic interactions. 
(Results without this limitation will be given in a future publication.) The assumption 
is that the plasma is both macroscopically and microscopically neutral. In the former 
case, this amounts to assuming a uniform neutralizing background of particles of 
charge opposite to the simulation particles; in the latter case, the model assumes that 
the energy density in electrostatic interactions is far less than the local energy density 
in magnetic fields. Clearly very strong magnetic fields are required. 

Finally, the model assumes that the total energy of each particle is conserved; thus 
radiative and collisional processes are ignored. A key feature of many devices is an 
applied toroidal electric field used to accelerate the plasma current. This field is 
supplied inductively by the rapidly changing flux of an additional vacuum coil with 
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time-dependent current; the plasma may then be seen as the secondary winding of a 
transformer. The details of this process are not treated; the model merely assumes 
that a curl-free electric field exists within the torus. The correct terms for electric 
drift are included in the guiding-center equations, and kinetic energy is supplied to 
(or removed from) the particles by the electric field at each timestep, according to 
A W” = -(qr $) Ap, where A@ is the toroidal angle the particle has moved 
through from time (n - 1) to time n, and V/2~-r is the electric field. The toroidal 
component of electric field induced by changing the plasma current has been allowed 
for in some coded versions of the model. 

At each timestep, then, the following quantities are known for each particle: 
position in three dimensions, kinetic energy, and magnetic moment. The values of all 
components of B at the particle’s position can be found by interpolation from a mesh 
of values; a straightforward bilinear interpolation is used. The particle’s gyrovelocity 
may then be computed from Eq. (14). Conservation of energy is then invoked to 
determine v,, , the velocity parallel to the magnetic field. By definition, 

(15) 

(the drift velocity UD has been neglected because of the basic assumption on < L+& 
then solving for u ,, e, 

v ,,2 = c2[1 - (l/r”)] - vo2. (16) 

The form of Eq. (16) is useful, since it may be used to check for the particle’s arrival 
at a mirror point (the end of a banana). As the particle passes through a mirror point 
in the course of one timestep, u,,~ in (16) will go negative, indicating that the particle 
has entered a region forbidden by its laws of motion. It will not have entered very far, 
however, for as v,, -+ 0, the error incurred by not turning the particle exactly at its 
mirror point will be very small (the single-particle orbit code by Anderson and 
Fuss [7] from which the guiding-center formulation was adopted conserved the 
longitudinal adiabatic invariant J to better than 1 part in lo8 over orbits including 
many bounces). Mirroring is very simply accomplished by keeping track of the sign 
of v,, for every particle (the sign is stored conveniently as the sign of II, which we know 
to be positive. definite; it is thus easy to spot trapped particles in output listings by 
watching the sign of r-L>. When z’ ,, 2 is calculated as being negative, the signs of v,, and 
p are changed. 

Using the resulting v,, and appropriate derivatives of B at the particle’s position, 
the drift velocity vn of the guiding center (due to all three sources) is calculated using 

b vD=--x B (cE + 5 VB) + w P x (b-V)bl; (17) 

b z B/B and B = I B I. The term-by-term form of (17) actually used in the running 
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code is shown in the Appendix for the reader’s convenience. The total velocity of the 
guiding center may now be calculated as the sum 

V =v,, +v,. (18) 

Henceforward we shall call this the particle’s velocity, since the particles represented 
by the code are actually guiding centers. 

We may now update the particle’s position from time n to n + 1. This update is 
accomplished by a “leapfrog-corrector” technique, in which a trial value at n + 1 is 
generated by a standard leapfrog difference procedure; using that new position and 
local fields, Eqs. (16)-(18) are used to find a trial value of vn+l. All of this is done to 
provide an approximate value of v n+1/2, thus properly time centering the equation 
dx/dt = v; a simple difference (xn+l - ?)/flt = r~+l/~ may then be used, and vn+l 
may be evaluated at the new position. If x is the general position vector, the four-step 
procedure is : 

step 1. (xn+l)* = X+-l + 2AtP. 

Step 2. (xn+l)* + [guiding-center formalism] -+ (vn+l)*. 

Step 3. x”+l = xn + (At/2)[v” + (Vn+l) *I. 

Step 4. xn+l ---f [guiding-center formalism] --f vn+l. 

With the particles at new positions at time n + 1, it is now necessary to solve for 
new values of the self-consistent fields over the whole computational mesh, after which 
the above process is repeated. 

The solution for self-consistent fields relies on a quasi-static approximation; the 
fields are found at each timestep from Ampere’s law, Eq. (2). A further approximation 
is that only the toroidal components of current are considered, thus only the toroidal 
component of particle velocity is used in constructing the source terms j for Eq. (2). 
Like the earlier assumption that magnetic interactions dominate electric ones, this 
assumption limits applicability of the method and must be kept in mind when 
applying it. Both were chosen because they greatly simplify the computational 
problem, and because they can reasonably be applied to certain phases of most 
axisymmetric toroidal devices. 

Although the simulation particles are moved about as though each is a single 
deuteron or electron, each particle actually represents many real particles distributed 
uniformly in a ring around the symmetry axis of the torus. Thus, the local current 
density, in statamperes per square centimeter, represented by a single simulation 
particle is defined as 

J* = 
eNvd 

2nr Ar AZ ’ (19) 

where N is the total number of deuterons or electrons per simulation particle. 
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Writing the toroidal velocity as t’* = v(d#df), the current density per simulation 
particle becomes 

The total current density of all the simulation particles is 

(20) 

and is added to the rhs of Eq. (13). Currents defined by (21) are assigned spatial 
locations on a mesh by the common technique known as “area weighting,” [S] in 
which fractions of the current for each particle are assigned to the four nearest mesh 
points in bilinear proportions. Since this can be thought of as enlarging the simulation 
particles from points to the size of a cell, they are known in the vernacular as 
“macroparticles” or super particles. In codes which calculate all self-consistent 
electromagnetic interactions, the sharp square edges of macroparticles obtained by 
area weighting are inadequate; the particles must be more smoothly shaped (as, for 
instance, a modified Gaussian) to prevent anomalous high-frequency components 
from being introduced into the radiated fields. Since our model has no radiated 
fields and is essentially quasi-static in nature, no such correction to the simple 
bilinearity of area weighting is necessary. 

SPECIAL FEATURES OF THE PARTICLE MODEL 

An advantage of using the guiding-center equations is that fewer particles are 
required to perform a simulation than might be required by more conventional codes. 
The number of particles required is dictated solely by the dynamics to be simulated- 
on how small a scale motions which affect the overall distribution actually occur. 
Typically, the number is more than an order of magnitude less than what one 
commonly thinks of for full-simulation codes. 

Studies must be performed during each simulation to guarantee that enough 
particles are being used. These may most obviously (but most expensively) be 
accomplished by raising the number of particles and repeating runs until no differences 
in spatial and velocity distribution are observed after long times. Fortunately, such 
studies (performed for a variety of simulation problems) do not reveal a great variance 
in the particle requirements. 

The orbit integration involves only the solution of an ordinary differential equation 
and thus is not subject to the customary Courant condition limiting the timestep. 
However, a practical timestep limitation is introduced by the relation 

At < f/26, (22) 

where r^ is the smallest radius of curvature involved in the guiding-center poloidal 
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motion and 6 is an averaged poloidal velocity. For larger values of d t the straightline 
orbit segments of each timestep may be too long to approximate the curvature 
properly, and the subsequent motion will be distorted. 

A more serious difficulty arises from the fact that the basic calculational cycle- 
solve for B, move particles, update currents, solve for B-is not properly time 
centered. The use of the guiding-center equations implies that a time integral has 
already been performed over one gyroperiod, the result being that one has no equation 
of motion for dv/dt; one has merely an algebraic expression for v at each timestep. 
Proper centering would have the velocities, currents, and fields defined half a timestep 
displaced from the positions. However, v, r, and B are all calculated at even timesteps. 
The inconsistencies which result are apparent when one considers that both (z~~+l)* 
and u”+l in the leapfrog corrector algorithm are evaluated using B”. Clearly this 
imposes the requirement that both particle and field quantities do not change too 
much in one timestep. This restriction is most severe when strong field gradients exist, 
as in the case of strongly interacting particles. 

The accuracy of the particle orbit integration algorithm was tested by comparing 
results for single-particle orbits with analytically calculable orbits in simple magnetic 
configurations. Results for more complex magnetic configurations were compared 
with the orbit code of Anderson and Fuss [7]. The accuracy was very good for 
timesteps typically used in applications of the code. 

The interdependence of v, j, and B requires some care in the initialization of 
problems. The tist step in preparing for the particles’ motion (once they have been 
located in the vacuum field or plasma current field) is to calculate their magnetic 
moment. However, the resulting value of EL. is not the permanently conserved quantity, 
because the self-consistent fields of the particle currents have not yet been taken into 
account in this calculation. A simple relaxation or renormalization procedure is used, 
in which the magnetic moment p is recalculated for particles at tixed positions in the 
most recently defined B. Total velocities and B are then redefined on the basis of 
these p’s, and the procedure repeated. It converges quite rapidly, usually in less than 
three cycles. 

The problem of particle sticking was the most severe difficulty encountered in the 
development of a workable guiding-center particle pusher. The visible manifestation 
of the problem was that some trapped particles spent long periods of time-even 
hundreds of cycles-apparently not moving in the poloidal plane, or in tracing out 
minute fractions of what their orbits should have been. When a particle has just 
mirrored, its velocity is still quite small for at least two or three, and often as many as 
five or six timesteps. During this otherwise uninteresting part of its orbit, the particle 
motion is particularly sensitive to the time-dependent part of B. Quite small changes 
in local magnetic field caused by collective effects of other particles may suddenly 
make it appear that the particle in question has passed a mirror point again. For 
example, at cycle n, particle p mirrors, changing the sign of v ,, ; because of its small 
velocity it travels less than a cell width in At, moving to a point where the local I B I 
is only 0.5 % less than I B Imirror . Between cycles n and n + 1, with all the particles 
fixed, &loidal is updated and changes at the four neighboring mesh points raise I B 1 
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at the location ofp by I g;. At cycle n + 1 p will again change the sign of vII , heading 
actually toward a region of higher I B I. The particle will have become “stuck” in an 
artificially created magnetic well. 

The effect is a result of the discretization of the time scale imposed by the numerical 
solution. In this form, it is peculiar to the guiding-center equations of motion and is 
essentially unavoidable. 

The solution to this problem is to recalculate p for each particle at its turning point. 
This results in smooth trajectories with precise turning points. This approach was 
avoided at first on the grounds that it meant tampering with the validity of the model, 
since constant p is fundamental. But exhaustive studies of the effects of the technique 
show that dp is usually on the order of 0.5 %, and rarely as much as 2 T/i. Some 
changes in two turnings amounting to as much as 4 “/: were observed occasionally in 
simulations of rather turbulent plasmas, but subsequent changes always resulted in 
cumulative LIP’S on the order of 2 7:. 

It appears that the temporally discrete guiding-center formalism introduces 
artificial nonadiabaticity into a simulation, in much the same manner in which 
spatially discrete meshes introduce artificial diffusion into hydrodynamics codes. 
Approximating variables continuous in time with ones which can only behave as step 
functions generates unavoidable small inaccuracies. Overall effects of the dp “cor- 
rection” (and, in fact, the reasonableness of the entire model) have been studied by 
calculating other theoretically conserved quantities. The second adiabatic invariant J, 

should be the one most drastically affected by changing p. Though it is not conserved 
here to the phenomenal degree that it is in Anderson and Fuss’ single-particle code [7], 
it does remain constant to within about 1 part in 1O1. Also, the 4 component of the 
cyclotron-averaged canonical angular momentum 

P, -G ym,ro, + (e/c) rA, (24) 

is an exact rather than an approximate invariant of the motion. Its conservation 
gives a good measure of the relative magnitude of errors introduced by LIP compared 
to those endemic to the entire model, since passing particles have no LIP correction 
but should also conserve Pb . It was found that both trapped and passing particles 
conserve Ph to about 1 part in 106. Therefore, dp-generated errors fall within the 
other limitations of the model. 

SOLUTION OF THE MAGNETIC FIELD EQUATION 

Solution of Eq. (13) requires that the sources j be defined over the computational 
mesh and the appropriate boundary conditions on 4 specified. Because of the 
differential form of the deikition of the B components, it is convenient to have the 
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flux values centered between field values; Eq. (13) requires that 4 and j have the same 
centering. Thus interlocking 
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defined at each of the mesh points, the reference flux #0 is chosen as the flux at the 
point (r, , ~3. The constant c can then be evaluated by 

With all these values available the sources of Eq. (13) can be evaluated at each of the 
mesh points and the equation solved by the method just described. We shall refer to 
this solution procedure as BPHI. 

At the end of this first iteration, the new $ surfaces will differ from the Biot-Savart 
trial function; r, will have changed as well, as the plasma begins to move toward its 
equilibrium position (call the new value rc’). For the second iteration, it is necessary 
to redefine #,, . The new &, is chosen as # at (rc’, a,). Then Z is recalculated from 
Eq. (26), and BPHI employed once again. 

This is the basic cycle of operations in one iteration: (a) redefine #,, ; (b) recal- 
culate 2; (c) use BPHI. Iteration proceeds until re and the flux surfaces cease to 
change. Once this point is reached, however, the equilibrium has not yet been found, 
because we have been arbitrarily limiting the radius of the plasma. So now #,, is fixed 
and iterations are performed using only steps (b) and (c) of the cycle above, allowing 
the plasma to expand or contract and further adjsut r, , if necessary. 

Typically it takes between 5 and 10 complete iterations of (a)-(c), followed by 
only two or three of (b)-(c), to arrive at an equilibrium. The number of cycles required 
depends obviously on the distance from equilibrium of the trial function. Presuming 
one already knows the correct value of (BZ)V8CUU,,, (or, rather, the #VBcUUII1 that 
generates it), to produce a reasonable equilibrium, the number of cycles required 
depends primarily on the discrepancy between initial and final values of rc . None of 
the test problems run, including those where the initial position was as far as possible 
from equilibrium (placed at the opposite side of a doubly elongated mesh), required 
more than 20 iterations to reach equilibrium. 

The advantage of this scheme when compared to more familiar methods of 
equilibrium calculation are its speed and convergence properties. A further significant 
advantage of this method is its generality-the ease with which it may be coupled 
interactively with other computation, such as macroparticle motion. After an 
equilibrium has been reached and the particles initialized, fluid and particle currents 
can easily be defined on the same mesh, and a single algorithm (BPHI) can be used 
to update the total flux self-consistently. 

As was demonstrated by Marder and Weitzner [4], the nonlinear nature of Eq. (13) 
can in many situations lead not to a unique solution but to a f?.nite number of solutions. 
In particular, for field problems such as this one, there tend to be two “bifurcated” 
solutions, a “shallow” one, in which the flux gradients are very small, and a “deep” 
one, in which the magnetic well is much more pronounced. Convergence, once 
guaranteed, may lead to the physically less desirable shallow well, depending upon 
the initial trial function. 

The form of the source term we have chosen could be a particularly dangerous one 
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in this context if Z is kept constant instead of I. A slight lowering of the maximum 
flux at any iteration without renormalization of C defined by Eq. (26) leads to disastrous 
consequences: The flux contained within the fixed & being less, there is less reai 
current in the problem; less total current will lead, on the next iteration, to a further 
lowering of $,, , initiating an unstable decrease. Before long (typically 10 iterations} 
1cI IllaX will be less than & and the plasma current will disappear entirely. The result 
will have converged to # = 0 everywhere. In our model we avoid this problem by 
making C? an implicit function of fi via Eq. (26); i.e., we solve for # with fixed Z rather 
than fixed Z. In this case we do not find multiple solutions. 

In order to test the speed of the present algorithm-it was compared with the first 
of the two methods proposed by Marder for finding bifurcated solutions. Their 
technique requires that each iteration be performed in a set of three subcycles. If, in 
operator notation L denotes the left-hand side of Eq. (13) and superscripts represent 
values of # at successive iterations, the method can be written: 
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FIG. 2. Equilibrium poloidal flux contours; solid line is the plasma boundary. 
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(1) solve L#“+1/3 = f(p); 
(2) solve LI/?+~/~ =f(p+'l"); 
(3) calculate +“+l = (1 - a) p + 2r4w3 - 47w3; 

where 01 is an arbitrary constant peculiar to the problem, convergence being demon- 
strated for suffitciently low 01. The first two steps of this method may be accomplished 
by a number of techniques- ADI, as in Anderson, Killeen, and Rensink [3] or the 
BPHI described here. 

Comparisons using the Marder method with the BPHI algorithm and the procedure 
described earlier were run for three different cases. Equilibria produced by the two 
techniques were essentially identical in all cases. Since Marder’s technique requires 
three cycles instead of one t,F to # n+l, and it also requires roughly twice as many 
iterations n + n + 1 to reach equilibrium, the present procedure is on the average 
almost six times faster than the Marder technique. 

Callen and Dory [2] use a slightly different perfectly conducting boundary condition, 

300 

r (4 
FIG. 3. Equilibrium current density along a plasma diameter. 
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namely, # = constant but not necessarily zero. To do this compatibly with their 
over-relaxation method of obtaining convergence, they maintain an extra artificial 
boundary and engage in an extrapolation procedure to readjust these boundary 
points and to test convergence. The boundary fluxes thus used are those generated 
by the trial solution. If the “bifurcation” problem is a severe one, choice of a good 
trial solution can force convergence to the desired physical result when this procedure 
is employed. 

Another motivation for choosing boundary conditions in which # # 0 is the 
attempt to simulate free-space, rather than perfectly conducting, boundary conditions. 
This may be done by redefining the boundary fluxes at each timestep using a Biot- 
Savart solution (as is done here for the trial function) applied to the whole plasma 
current. 

Both of these nonzero boundary conditions have been used successfully in con- 
junction with the algorithm BPHI. It was found that the simplest method was merely 
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to set the #‘s on the boundary equal to the 4’s at the nearest inside mesh points at 
each cycle of BPHI (then fix them during any succeeding calculation of equilibrium 
changing under the influence of particle motion). Results of equilibria calculated 
in this manner agreed with those calculated using identical inputs, but # = 0 on the 
boundaries by 1 part in lo6 at all mesh points. The method requires, of course, more 
coding and slightly longer running times for equilibria than does # = 0; it was 
therefore abandoned when it was discovered that renormalization of Z (required by 
both kinds of boundary conditions) was by itself sufficient to force convergence to the 
physically desired equilibrium with the Biot-Savart trial functions. 

The free-space boundary condition approximation was implemented and shown 
to work but has not been used extensively because one of the perfectly conducting/ 
finite-wall assumptions was always found to be sufficient as a model for the devices 
studied, and use of the free-space approximation greatly increases running time of the 
equilibrium calculation. 
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APPLICATION 

This code has been used to study the effects of injecting energetic neutral beams 
into a Tokamak equilibrium plasma. The beams, represented by the guiding-center 
model in our code, may be used primarily for heating the bulk plasma or they may 
directly produce fusion reactions, as in the two-component reactor concept [9]. 

In the application described here the Tokamak plasma is represented by the 
quasi-equilibrium MHD model in which the scalar pressure is given by p(#) = 
E(# - #J2, #O < #, where #(r, z, t) is the poloidal flux function, &, defines the 
plasma boundary, and C is a constant. The toroidal plasma current density, 

hp = crp’(*h 

is added to the guiding-center beam current density (21) to generate the net poloidal 
field from Eq. (13). The value of the constant Z is adjusted during beam buildup so 
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as to yield a IIxed value for the total plasma current. Typical equilibrium plasma and 
magnetic field parameters are: 

(plasma major radius) R0 = 325 cm; 
(plasma minor radius) an = 65 cm; 
(total plasma current) IT = 0.77 MA; 
(applied toroidal field) B= = 37.5 kG at r = R, ; 
(applied vertical field) Bv = 425 G. 

In the absence of injected beams, poloidal flux contours are as shown in Fig. 2, and 
the current density profile along a plasma diameter in Fig. 3. 

The guiding-center beam particles are loaded into the system with a density 

(27) 
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where 
p2 = (I - &)2 + 22 < u*a, (28) 

where IV* = 2500 is the total number of macroparticles used, and ub is the beam 
deposition radius. The initial velocities of the particles are chosen to be either parallel 
or antiparallel to the symmetry direction, so as to represent co- and counter-injection. 
At the initial time, t = 0, all 2500 macroparticles are simultaneously loaded into the 
system, but the charge per macroparticle is initially zero and increases linearly in time 
over some finite time interval in order to represent the kite pulse duration in an 
actual neutral beam injection experiment. Typical beam parameters are: 

(neutral beam current) Ib = 80 A; 
(beam pulse duration) rb = 30 msec; 
(deuteron beam energy) Eb = 80 kev; 
(beam deposition radius) ab = 50 cm; 

and the initial particle positions are shown in Fig. 4. 
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As beam current is injected the poloidal field changes in time and both the plasma 
equilibrium and the beam particle orbits are affected. It should be noted that the 
simulated time duration for the computer runs is necessarily much shorter than the 
beam pulse duration in a realistic experiment. Therefore, in the computer runs we 
inject the total beam charge, &Tb , in a time 7inj which is short compared to 71, but 
still long compared to the drift times for a beam particle. 

We present results for three injection conditions: (1) both co- and counterinjected 
beams are used (one-half of the total beam current in each direction); the beam 
current buildup time is 7ini = 25 psec; (2) same as (l), except Tinj = 150 psec; 
(3) Only COinjeCtiOn iS used, Tinj = 150 psec. 

Results for case (1) after 18 psec are shown in Figs. 5 and 6. At this time the 
toroidal particle current flowing in each direction (0.12 MA) is a significant fraction of 
the bulk plasma current (0.77 MA). In Fig. 5 the two concentrations of particles 
can be identified with the co- and counterinjected beams, now spatially separated. 
The corresponding flux plot (Fig. 6) reveals that the plasma has been pushed toward 
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the edge of the domain and its surface has been deformed. The coinjected and counter- 
injected currents have repelled one another, while the plasma current and coinjected 
current have stayed together (parallel currents attract, opposing currents repel). 
As time proceeds, the gross motion of the system in the (I, z) domain is basically an 
orbital motion of the oppositely directed currents about one another. The time scale 
for this orbital motion is observed to be on the order of 1 psec, in this case. 

Results for case (2) after 75 psec are shown in Figs. 7 and 8. The same mutual 
repulsion and attraction between current components is obvious, and, in addition, 
some of the counterinjected particles have had time to drift a considerable distance 
outside the plasma, where they would normally be lost on a plasma limiter (not 
included here). 

Results for case (3) after 40 psec are shown in Figs. 9 and 10. To avoid the 
undesirable distortions associated with counterinjected beams, only coinjection has 
been used here. No significant change in the distribution of beam particles is observed 
and the plasma surface, while somewhat expanded, is not distorted. This situation 
remains unchanged beyond the end of the injection. 
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Other variations on these three cases have been investigated and they tend to 
support the observation presented here that counterinjected beams have a disruptive 
effect on the equilibrium of the system. Experimental evidence for this behavior in 
Tokamaks is not available. The major areas in which our model could be improved 
are : 

(1) better treatment of electron plasma currents, including resistivity; 
(2) more realistic injection of particles, including spatial and angular distri- 

butions; 
(3) poloidal beam and plasma currents; 
(4) electron drag force on the beam. 

Some or all of these refinements may be necessary for a detailed comparison with 
experiment. Results for the specific application discussed could change as a con- 
sequence of these modtications, but the computational model appears to be a 
workable one. 

APPENDIX 

Listed below are the detailed expressions for the three (cylindrical) components of 
guiding-center velocity (Eqs. (17) and (18)). Y is the purely toroidal, externally applied 
accelerating potential. 

aB - Br2 -& - + Bz], 

c -- 
( I[ 

v12ymo B 
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